Gradient Kähler-ricci Solitons and a Uniformization Conjecture
نویسندگان
چکیده
In this article we study the limiting behavior of the KählerRicci flow on complete non-compact Kähler manifolds. We provide sufficient conditions under which a complete non-compact gradient KählerRicci soliton is biholomorphic to C. We also discuss the uniformization conjecture by Yau [15] for complete non-compact Kähler manifolds with positive holomorphic bisectional curvature.
منابع مشابه
A Survey on the Kähler-ricci Flow and Yau’s Uniformization Conjecture
Yau’s uniformization conjecture states: a complete noncompact Kähler manifold with positive holomorphic bisectional curvature is biholomorphic to C. The Kähler-Ricci flow has provided a powerful tool in understanding the conjecture, and has been used to verify the conjecture in several important cases. In this article we present a survey of the Kähler-Ricci flow with focus on its application to...
متن کاملA Characterization of Koiso’s Typed Solitons
By extending Koiso’s examples to the non-compact case, we construct complete gradient Kähler-Ricci solitons of various types on certain holomorphic line bundles over compact Kähler-Einstein manifolds. Moreover, a uniformization result on steady gradient Kähler-Ricci solitons with nonnegative Ricci curvature is obtained under additional assumptions.
متن کاملOn the Simply Connectedness of Non-negatively Curved Kähler Manifolds and Applications
We study complete noncompact long time solutions (M, g(t)) to the Kähler-Ricci flow with uniformly bounded nonnegative holomorphic bisectional curvature. We will show that when the Ricci curvature is positive and uniformly pinched, i.e. Rī ≥ cRgī at (p, t) for all t for some c > 0, then there always exists a local gradient Kähler-Ricci soliton limit around p after possibly rescaling g(t) alon...
متن کاملNon-kähler Ricci Flow Singularities That Converge to Kähler–ricci Solitons
We investigate Riemannian (non-Kähler) Ricci flow solutions that develop finite-time Type-I singularities with the property that parabolic rescalings at the singularities converge to singularity models taking the form of shrinking Kähler–Ricci solitons. More specifically, the singularity models for these solutions are given by the “blowdown soliton” discovered in [FIK03]. Our results support th...
متن کاملStability of Gradient Kähler-ricci Solitons
We study stability of non-compact gradient Kähler-Ricci flow solitons with positive holomorphic bisectional curvature. Our main result is that any compactly supported perturbation and appropriately decaying perturbations of the Kähler potential of the soliton will converge to the original soliton under Kähler-Ricci flow as time tends to infinity. To obtain this result, we construct appropriate ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002