Gradient Kähler-ricci Solitons and a Uniformization Conjecture

نویسندگان

  • ALBERT CHAU
  • Albert Chau
چکیده

In this article we study the limiting behavior of the KählerRicci flow on complete non-compact Kähler manifolds. We provide sufficient conditions under which a complete non-compact gradient KählerRicci soliton is biholomorphic to C. We also discuss the uniformization conjecture by Yau [15] for complete non-compact Kähler manifolds with positive holomorphic bisectional curvature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Survey on the Kähler-ricci Flow and Yau’s Uniformization Conjecture

Yau’s uniformization conjecture states: a complete noncompact Kähler manifold with positive holomorphic bisectional curvature is biholomorphic to C. The Kähler-Ricci flow has provided a powerful tool in understanding the conjecture, and has been used to verify the conjecture in several important cases. In this article we present a survey of the Kähler-Ricci flow with focus on its application to...

متن کامل

A Characterization of Koiso’s Typed Solitons

By extending Koiso’s examples to the non-compact case, we construct complete gradient Kähler-Ricci solitons of various types on certain holomorphic line bundles over compact Kähler-Einstein manifolds. Moreover, a uniformization result on steady gradient Kähler-Ricci solitons with nonnegative Ricci curvature is obtained under additional assumptions.

متن کامل

On the Simply Connectedness of Non-negatively Curved Kähler Manifolds and Applications

We study complete noncompact long time solutions (M, g(t)) to the Kähler-Ricci flow with uniformly bounded nonnegative holomorphic bisectional curvature. We will show that when the Ricci curvature is positive and uniformly pinched, i.e. Ri̄ ≥ cRgi̄ at (p, t) for all t for some c > 0, then there always exists a local gradient Kähler-Ricci soliton limit around p after possibly rescaling g(t) alon...

متن کامل

Non-kähler Ricci Flow Singularities That Converge to Kähler–ricci Solitons

We investigate Riemannian (non-Kähler) Ricci flow solutions that develop finite-time Type-I singularities with the property that parabolic rescalings at the singularities converge to singularity models taking the form of shrinking Kähler–Ricci solitons. More specifically, the singularity models for these solutions are given by the “blowdown soliton” discovered in [FIK03]. Our results support th...

متن کامل

Stability of Gradient Kähler-ricci Solitons

We study stability of non-compact gradient Kähler-Ricci flow solitons with positive holomorphic bisectional curvature. Our main result is that any compactly supported perturbation and appropriately decaying perturbations of the Kähler potential of the soliton will converge to the original soliton under Kähler-Ricci flow as time tends to infinity. To obtain this result, we construct appropriate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002